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Fermat’s principle and real space-time rays in absorbing 
media 

Dan Censor 
Department of Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 
Israel 

Received 7 April 1977, in final form 10 June 1977 

Abstract. Real wave packets and group velocities are considered for linear, dispersive 
homogeneous (but possibly anisotropic) absorptive media. In inhomogeneous media the 
rays are determined by the Fermat principle. Coupled with the relevant constraints this 
yields the Hamilton equations of geometrical optics for real rays in absorbing media. 

1. Introduction 

Ray methods are widely used in physics for discussion of short wave propagation in 
inhomogeneous media, e.g. for quantum mechanical applications (Synge 1954) and 
electromagnetic waves (Brandstatter 1963, Felsen and Marcuvitz 1973). The identifi- 
cation of rays as characteristics of the eikonal equation is well understood, and the 
physical import of the group velocity as describing the motion of energy packets or 
particles is discussed by many authors. 

The problem of ray tracing in absorbing media, where the dispersion, or eikonal 
equations are complex is not unique, and essentially two approaches are evident in the 
literature. Jones (1970), and Budden and Terry (1971) generalised the Hamilton 
equations formally, by continuing space-time into the complex domain. This method of 
complex ray tracing has been widely used (see, e.g., Bennett 1974, Wang and 
Deschamps 1974, Connor and Felsen 1974, who give ample references to the existing 
literature). While mathematically consistent, in providing solutions to the eikonal 
equation, these methods are difficult to interpret physically. This is probably the reason 
for the many attempts to trace real rays in absorbing media. Various definitions for the 
group velocity have been suggested (Barsukow and Ginzburg 1964, Storey and 
Roehner 1970, Suchy 1972a, b, 1974). The latter have been claimed to give rise to 
non-unique results; this has been discussed by Bennett (1974), Suchy (1974), and 
Censor and Suchy (1976) who show that Suchy’s formalism (Suchy 1972b) cannot be 
considered non-unique in view of Bennett’s (1974) argument. Recently Censor and 
Suchy (1975) provided an alternative method for real ray tracing in absorbing media. 
All methods cited above are characterised by the fact that if absorption vanishes, the 
classical Hamilton equations of geometrical optics are obtained. 

In the present study the determination of real rays as the path describing the motion 
of wave packets in absorbing media is considered by means of Fermat’s principle. It is 
shown that the previous results (Censor and Suchy 1975) obey the Fermat principle, 
although the original argument was quite heuristic. 
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We start by discussing the primitive ideas of group propagation in homogeneous, 
time-independent media. The Fermat principle is discussed in space-time, and its 
plausibility is justified in terms of the extrema1 proper time associated with a wave 
packet which moves between two fixed points in space-time. The real ray tracing 
formalism proposed by Censor and Suchy (1975) is derived from Fermat’s principle, 
coupled with the relevant constraints. These are the requirement that the path is real, 
and that the dispersion equation must be satisfied along the path. 

2. Real group velocity and wave packets in homogeneous media 

The concept of a group velocity is commonly introduced (Brillouin 1960) by the beat 
produced by two plane waves having slightly different K :  

+ ei(K-sK)x ) = eiKx COS(SK. x), (1) +(ei(K+SK)X 

for compactness the four-vector notation is used for space-time X = (x, ict), and 
K = (k ,  io/c), where k, w are real. The medium is characterised by a dispersion 
equation w = w ( k ) ,  which is represented as F(K) = 0. In ( l) ,  a train of wave packets is 
described, where exp(iK. X) is the carrier, cos(SK. X) is the envelope. Let a pathX(w) 
be traced, where w is a real parameter such that 6 K .  X = constant, i.e. we follow a 
certain value of the envelope through space-time according to SK. d.X/dw = 0. 
Assuming small SK, 

and since F = 0 for all allowed arguments, we have 

aF 
aK 

SF =- . SK = 0. 

It follows that 

d x  l3F 
-=A(w)-, 
dw dK 

(3) 

(4) 

where h(w) is an arbitrary, real, scalar function. Splitting (4) into space and time 
components, we get 

dt afi- dr aF -=A-, 
dw dk dw aw 

-= -A-. 

Up  to this point, the use of the four-vector notation was only a matter of convenience. 
However, we wish the velocity 

to describe the motion of physical entities, e.g. energy, or particles. The relation of 
space-time rays to the theory of relativity is discussed by Synge (1954). The significance 
of using here special relativistic ideas will be further discussed in connection with the 
Fermat principle, below, giving it a physical meaning for space and time varying media. 
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The Minkowski arc length element is defined by dX. dX = (ds)2. Accordingly it is seen 
from (4) that dwh(w) is not arbitrary, obeying the relation 

or, by defining the proper time d7 = ds/ic, the relation of hdw to the proper time is 
established. The second line ( 5 )  is now written in the form 

and for real t, 7, dF/aw, c the product in parentheses in (8) must be negative. This 
implies Idx/dtj <c. In physical systems where Idx/dtl<< c, e.g. acoustic waves, dt = d r  
and the whole argument is trivial, for Idx/dt( = c, d7 = 0 and the argument breaks down. 
However, for electromagnetic waves in material media and relativistic particles the 
discussion is relevant. 

Consider now the problem of complex K, i.e. complex k ,w ,  which arises in 
connection with absorbing media. Let us define 

K =  RK+iIK, 
RK = (Re k, i Re  o / c ) ,  

I K  = (Im k, i Im w / c ) ,  

(9) 

where Re, Im denote the real, imaginary parts, respectively. Accordingly (1) becomes 

exp(-IK. X +iRK. X)[cos(RSK. X) cosh(1SK. X) - i  sin(RSK. X) sinh(ISK.X)]. 

(10) 

It is clear that the envelope, i.e. the terms in square brackets in (lo), is constant provided 
RSK. X, ISK. X are constant, or RSK. dX/dr  = ISK. dX/dr  = 0, simultaneously. On 
the other hand, if F i s  analytical in its arguments Ki, i = 1, . . . ,4 ,  (3) is valid, prescribing 

d F  d F  
aK aK 

R6K. R -- I6K. I - = 0, 

dF aF 
dK dK 

RSK. I - + ISK. R - = 0. 

For IX = 0, i.e. real x, t, (1 1) can be satisfied for complex K if I(aF(K)/aK) = 0. The 
analogue of (4) is now 

dF dx dF 
- = A ( w ) - - ,  
dw dK aK 

I-=o. 

The argument (6)-(8) is still valid. Consequently a wave packet having a real group 
velocity can be constructed in an absorbing medium. It is noted that the carrier wave 
now has an exponentially decaying part, in addition to the oscillatory term. 

It is possible to extend (4) into the complex domain by assuming complex space- 
time. This corresponds to the complex ray tracing formalism mentioned in the introduc- 
tion. 
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Returning to real k, w in lossless media, consider arbitrary wave packets, rep- 
resented as a superposition of plane waves 

J d4KA (K)S ( F )  elKx, (13) 

where S(F) signifies that only values K satisfying F ( K )  = 0 are admitted, A ( K )  denotes 
an amplitude function. By virtue of S ( F )  we actually have a three-fold integral, on a 
surface in K space described by F ( K )  = 0. Analogously to (2), we expand F about some 
central value KO, keeping only the first derivative, 

dF 
aK0 

F ( K ) = F ( K o ) + - .  (K-KO), 

and note that the last term vanishes in view of F ( K )  = F(Ko) = 0. Splitting (13) into 
carrier and envelope factors, we have 

exp(iKo. X) d4KA (K)S ( F )  exp[i(K -KO) . XI. 
The envelope is constant subject to ( K - K O )  . X = constant, hence (4) is again obtained. 
The value ( K - - K o ) .  X =  0 locates the saddle points of the integral (1% thus (4) 
describes the motion of the region in space-time where constructive interference 
produces the wave packet. A similar discussion has been given by Stratton (1941, 
p 332) for one-dimensional waves. 

For absorbing media (15) is applicable if a real group velocity is imposed. 
Accordingly a S(I(dF/dK) factor is included in the integral (15). 

3. Real ray tracing in lossless media and Fermat’s principle 

The theory of geometrical optics is discussed in many books (Brandstatter 1963, Felsen 
and Marcuvitz 1973) hence a few introductory remarks will suffice here. Consider a 
system of linear partial differential equations which govern the physical problems of 
wave propagation in a sourceless domain 

where Fm, is a square matrix involving the operator 

-=(- a a --) l a  
ax ax’ic at ’ 

and fn are the field components, e.g. E, H fields for the electromagnetic case. The 
leading term of the asymptotic expansion used in geometrical optics is given by 

f, (x) = a, (x) eiecx), (17) 

where the large parameter of this asymptotic expansion is absorbed in 8 here. The 
amplitude a, and the derivatives of 13 are slowly varying functions of X .  Substituting 
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(17) in (16) leads to a system of homogeneous equations whose determinant must 
vanish, hence, 

det Fmn( i ; X) 5 4% ; X) = 0. 

This is the eikonal equation, and written in the form 

F(K;  X) = 0, K = aO/aX = (k, iw/c), (19) 

it is called the dispersion equation. The phase is represented in the form 
x 

e(x) = I, K(x’)  . dx‘, (20) 

where Xo is fixed and X’ denotes the integration variable. For consistency with the 
definition of K in (19), the integral (20) must be independent of the choice of the path 
between the end points, this prescribes that the four-curl of K must vanish (Poeverlein 
1962) or V x k = 0, dw/ax +&/at = 0, equivalently. To solve (18), (19) they are usually 
reduced (Felsen and Marcuvitz 1973) to a system of first-order ordinary equations by 
writing 

-=xi-- d F  

where summation over i = 1, . . . ,4 denoting the components of K, X, is understood, 
and w is a real parameter. The differential equations 

satisfy (21) with arbitrary functionsh l(w), A2(w), A3(w), A4(w). It is therefore clear that 
unless additional constraints are imposed, (22) is not unique. On the trajectories chosen, 
we have 

de  ae dx dx - K . - - ,  -=- _ _  
dw dX’dw dw 

hence 

as in (20). To determine those special paths, which describe the motion of the wave 
packet, the Fermat principle is imposed. In its simplest form (in time-independent 
media) the principle states that wave packets, moving between two fixed points in space, 
will follow the path on which the time is an extremum. Consider the variation of d e  
(23): 

6 d0=S( - .dx iEd t )  ae = S [ ( k . $ - w )  dt] 
ax at 

For time-independent media w is constant hence S de  = 0 implies 

dx 
( 2) dt 

6 k . -  d t + k . - a d t = O .  
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Fermat’s principle means that 6 dt = 0, i.e. the time must be an extremum. Hence 
S (k . dx/dt) = 0. 

For a time-independent medium we therefore have 

where the variation affects k, dr, but not the integration variable dt. In (24), if we fix the 
end points, then the time at the two ends of the path is fixed, and cannot be used as the 
quantity that is extremised. If we adopt S de  = 0 as the general statement of Fermat’s 
principle, then, as in (26) 

dx 
dw+K.-Sdw=O. 

dw 

However, the condition S dw = 0 does not have a physical interpretation. But if the 
relation of w to the proper time 7 is recognised, (28) becomes physically meaningful. 
We choose to identify w = 7 as the proper time, thus dX1d.r becomes the four-velocity. 
From (28), the condition that S d7 = 0, i.e. that the path will be such that the proper time 
is extremised, prescribes 

At this point it is observed that F = 0 (19) must also be satisfied, hence we have a 
constraint associated with (29). Using a Lagrange multiplier function and adding the 
constraint to the integrand (29), we get 

dx 
d7 

6 I (K. --A(T)F(K; X)) dT = 0. 

By varying K, X and observing that the variation vanishes at the end points, we obtain 

dx aF d K  aF 
dT aK’ 
- = A ( ? ) -  -=-A(T) - ,  d7 ax 

which are recognised as a special case of (22). The value of A (31) is obtained from (7). 
Splitting (31) into space and time components and dividing by dt, we obtain 

d o  - aF/at dt aF 
dt  aF/aw’ d7 aw 

- = - A - .  

The last equation is uncoupled, and the solution of the others describes the path of the 
wave packet x ( t ) ,  and k(t) ,  w ( t )  of the carrier as they vary along the path. 

4. Real ray tracing in absorbing media 

In this section the ray equations for real rays in absorbing media will be discussed. One 
way of dealing with complex K is to admit complexX, such that F(K, X) = 0 in (1 8), (19) 
and B(X) in (20) are analytic in the complex variables Ki,  Xi, i = 1, . . . , 4 .  The 
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extremum (29) now corresponds to saddle points, rather than maxima or minima. 
Although mathematically everything is in order, the physical interpretation of Fermat’s 
principle and the concept of a complex group velocity are not clear, except when the 
complex ray intersects real space-time. 

However, the discussion of wave packets in homogeneous media (12), shows that 
real rays can be defined in absorbing media, describing the motion of wave packets with 
real group velocities. 

It is therefore necessary to confine X(w), describing the path, so that I X ( w )  = 0. 
This is a vector constraint, hence we add it into the Fermat principle integral with a 
vector Lagrange function IA. We may also define A = RA + IA, such that RA = 0 and 
add A .  X in the integral, provided IA . RX = 0 is stipulated. 

Accordingly, the Fermat principle is written in the form 

6 0 = 0 = 6 1  (33) 

which leads to the set of equations 

aF 
-A(w)--A(w).  

d K  -= d X  d F  
dw aK dw ax - = A ( w )  -, (34) 

Since LX = 0 the end points of the integral are taken in real space-time. Multiplying 
the first equation (34) by A and noting that A .  IX = 0, we obtain 

We now identify R d X  as the real space-time element, and accordingly w is 
identified with r ,  the proper time, so that 6 dw = 0, (28) gives the Fermat principle its 
physical interpretation as discussed above. 

We are free to choose Im A = 0, hence (35) can be written as 

aF I - = = ,  
aF - A (r)R--, -- d R X  

d r  aK aK 

where (36) coincides with the condition given in (12), and as in (7), 

implying Idx/dt I < c. 

along the path, i.e. 
The determination of .4 in (34) is facilitated by observing that I(aF/aK) must vanish 

Substituting (34) subject to IX = 0, RA = 0, Im A = 0, we obtain 

aF a2F aF a2F 
ax aKaK aK’ axaK . 

IA=-A ( R- --- -) 



1788 D Censor 

Equivalently, we can express the result (38) by observing that I(aF/dK) = 0, (36) implies 

aF/ak 
aF/aw 

Im--0, 

and therefore 

(39) 

This has been done by Censor and Suchy (1975) based on somewhat physical argu- 
ments, without using the Fermat principle. It is then shown that 

Imv=O,  dx aF/ak 
dt aF/aw ' 

U=-=-- 

5. A simple example 

As an illustration, we consider the Gaussian plane pulse, discussed by Connor and 
Felsen (1974), in connection with the complex ray tracing theory. At the boundary 
z = o  

U(O, t )  =e~p[ - iw~t - ( t / 2a )~ ] ,  a, 0 0  > 0, (42) 

u(z ,  t )  =- dw exp[-(o -oo)'+ikz -iwt], (43) 

is given, where a,  w o  are real constants. For z > 0 we have a wave packet 

JT Im 
with the proviso that F(k ,w)=O is satisfied for the medium at hand. Since we are 
dealing with a one-dimensional case (scalar k ) ,  the dispersion equation can be written as 
k = k ( o )  (Connor and Felsen 1974). For a large enough (14) applies in the form 

w ,  = W O +  ip, (44) 
dk 

k ( w )  = k(w,)+---(w -4, 
dw s 

where p is real, such that dkldw, is real. Substituting (44) in (43) we obtain the 
analogue of (13,  

m 

d o  exp[-a ' ( w  - w0)' - i(w - ws)Ol 2 I, u(z,  t ) =  exp(ik,z -iw,t) 

e = t - - z ,  k ,  = k(ws), 
(45) dk 

dw s 

displaying the carrier and the envelope, the latter being constant on 8 = constant. 
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Performing the integration we get 

U ( z ,  t )  = exp(ik,z - iw,t) exp[-pB - (8/2a)‘], (46) 

which reduces to (42) for z = 0. It is possible to rewrite (46j in the form 

U(Z, t )  = exp[ikoz - h o t  - ( 8 / 2 ~ ~ ) ~ ] ,  (47) 

where from (44), 

and k o  is complex, in absorbing media. We have therefore shown how the pulse moves 
in an absorbing medium, with a real group velocity and a complex K for the carrier. 

The model given here, as seen from (14) depends on the fact that terms containing 
higher derivatives can be neglected. This is true when the dispersion is small, such that 
higher derivatives of F are negligible, or when we have a narrow band spectrum such 
that powers of ( K - K o )  can be neglected. A numerical analysis performed by Terina 
(1972) shows the effects of dispersion and absorption when the present assumptions do 
not hold any more. The interesting result is that the group velocity and central (carrier) 
frequency vary as the wave packet moves into the medium. To see the effect of higher 
derivatives, the integral (43) can be approximated by the saddle point method. The 
saddle points are given by 

us =WO+ 2a  t - 2  $), 
and 

U (2, t )  - 2’”a eis(2a - iz d2k/dZW,)-”2, 

s = k,z -o,t+ia2(W,-wO)2. 

For a lossless medium, we define 

(49) 

then (49) is satisfied. This means that e i s  with S = koz -w0l  is the carrier, and the 
amplitude changes with z according to the term in parentheses in (50), i.e. dependingon 
d2k/doi.  For a given 1y and k ( w ) ,  the distance z for which the amplitude is approxi- 
mately constant can be estimated. For absorbing media us = w 0  + ip is chosen so that 
dkldw, is real. According to (49), 

t - z (dkldo,) 
P =  2 a 2  

hence a different real velocity is involved, namely dz/dt = (dk/dwJ’, and affects the 
path (52), as well as the amplitude, as seen when z is substituted from (52) into the 
parentheses in (50). Again this gives an estimate for the cases for which the approxima- 
tion (14) is valid. 
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6. Concluding remarks 

The problem of defining a wave packet and a real group velocity in absorbing media has 
been considered. The feasibility has been discussed for homogeneous and time- 
independent media. Using the extended Fermat principle, whose physical import is 
discussed, real ray tracing in weakly inhomogeneous and time varying media has been 
considered. The end products are equations (34), (38) or equivalently (41), the latter 
have been obtained previously, but are here justified as solutions of the dispersion 
equati.on which also satisfy Fermat's principle. Other methods of real ray tracing have 
been proposed in the past, e.g. by Suchy (1972b). Like all schemes based on the 
solution of the dispersion equation, including the present theory, they can be con- 
sidered as special cases of the general complex ray tracing formalism; however, the 
present method ensures that the group velocity is a real velocity, satisfying the 
requirement that it is properly related to a four-velocity, and that Idr/dtl <c,  and 
simultaneously also satisfies the Fermat principle. 

The formalism is applicable for any branch of physics where wave equations are 
given for absorbing media. Numerical computations, especially in connection with 
ionospheric propagation will be considered in the future. 
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